**
***A. Articles*
**
***:*

1. Ali A. Jafarian, Alexey Popov, Mehdi Radjabalipour, and Heydar Radjavi,* Cummutators of Small Rank and reducibility of Operator Semigroups, *to appear in the Proc. Amer. Math. Soc. (2014).

2. Ali A. Jafarian*, Linear Preservers on Strictly Upper Triangular Matrix Algebras, *Oper. Matrices , 7, No. 4, 947-953 (2013).

3. A. A. Jafarian, *Mathematics of Computerized Tomography*. (This is an article dedicated to Professor M. Radjabalipour on the occasion of his prestigious award from Farhangestan-e Uoloum, 2012, Iran.)

4. J. Bernik, … , A.A. Jafarian, …, *Semigroups of Operators with Nonnegative Diadonals*, Linear Alg. Appl., 433, 2080-2087 (2010).

5. A.A. Jafarian, *A Survey of Invertibility and Spectrum Preserving Linear Maps*, Bull. Iranian Math. Soc.,35, No.2, 1-10 (2009).

6. A.A. Jafarian, et. al, *Semitransitive Subspaces of Operators*, Electronic J. of Lin. Alg*.,*15, 225-.

7. A.A. Jafarian, L. Rodman, and P. Semrl, *linear Maps Preserving the Isomorphism Class of Lattices of Invariant Subspaces,* Proc. of Amer. Math. Soc*., 126,* 3607-3617(1998).238(2006).

8. A.A. Jafarian, H. Radjavi, P. Rosenthal, and A.R. Sourour, *Simultaneous Triangularization, Near **Commutativity, and Rota’s Theorem,* Trans. of Amer. Math. Soc*., *347, No. 6, 2191-2199 (1995).

9. D. Hadwin, A.A. Jafarian, C. Laurie, E. Nordgren, H. Radjavi and P. Rosenthal, *Local Multiplications on Algebras Spanned by Idempotents,* Lin. and Mult. Alg*., *37,259-263 (1994).

10. A.A. Jafarian, and A. R. Sourour, *Linear Maps that Preserve the Commutant, Double Commutant or the Lattice of Invariant Subspaces*, Lin. and Mult. Alg., 38, 117-129 (1994).

11. A.A. Jafarian and A. R. Sourour, *Continuity Properties of Hyperlat and Reducing Subspaces,* Linear Alg. Appl. 141, 253-264 (1990).

12. M.D. Choi, A.A. Jafarian, and H. Radjavi, *Linear Maps Preserving Commutativity*, Linear Alg. Appl*. *87, 227-241 (1987).

13. A.A. Jafarian and A. R. Sourour, *Spectrum Preserving Linear Maps,* J. Funct. Anal. 66, No. 2, 255-261 (1986).

14. A.A. Jafarian and M. Radjabalipour, *Transitive Algebra Problem and Local Resolvent **Techniques, *J. Operator Theory*, *I, No. 2 (1979).

15. A.A. Jafarian, *Algebras Intertwining Normal and Decomposable Operators*, Can. J. of Math*., *XXXI, No. 6, 1339-1344 (1979).

16. A.A. Jafarian and A. G. Miamee, *On Matrices Over the Ring of continuous Functions and n-**Normal Operators*, Bull. Iranian Math. Soc*., *6, No. 2, 69-78 (1979).

17. A.A. Jafarian and H. Radjavi, *Compact Operator Ranges and Reductive Algebras*, Acta. Sci. Math.*, *40, 73-79 (1978).

18. A.A. Jafarian, *Weak Contractions of Sz-Nagy and Foias are Decomposable*, Rev. Roum. Math. Pures et Appl.*,* XXII, No. 4, 489-497 (1977).

19. A.A. Jafarian, *Weak and Quasi-Decomposable Operators,* Rev. Roum. Math. Pures et Appl.*, *XXII, No. 2, 195-212 (1977).

20. A.A. Jafarian and F. H. Vasilescu, *A Characterization of Two-Decomposable Operators*, Rev. Roum. Math. Pures et Appl., XIX, No. 6, 769-771 (1974).

21. A.A. Jafarian, *Existence of Hyperinvariant Subspaces*,Indiana University Math. J., 24, No. 6, 565-575 (1974).

22. A.A. Jafarian, *Some Results on A – Unitary, A – Self-Adjoint, and Decomposable Operators*, Indiana University Math*. J.,* 23, No. 11, 975-979 (1974).

23. A.A. Jafarian, *On Reductive Operators*, Indiana University Math. J*., *23, No. 7, 607-613 (1974).

24. A.A. Jafarian, *Spectral Decompositions of Operators on Banach Spaces*,Ph.D. Dissertation*,* University of Toronto (June 1973).

25. A.A. Jafarian, *On Differentiability of Continuous Functions,* Proc. of the First Iranian Math.Conf.*,*49-56(1970).

**
***B. Books:*

1. Translation to Persian of the book: *Calculus and Analytic Geometry*, by G.B. Thomas, 1980. (Co-translator: Dr. A.G. Miamee.)

2. *English-Persian Dictionary of Mathematics and Statistics*, Iranian Math. Society, 1991. (This is the result of several years of work accomplished by a group of Iranian mathematicians. I was one of the editors and a major contributor to this work.)

3. *Linear Algebra*, under preparation.